

深圳市蓝宝安科电子有限公司

Shenzhen LanbaoAnke Electronics Co.,Ltd.

承 认 书

APPROVAL SHEET

编号 NO.	LB-HSD-01
版次 Ver.	A/1

客户	
Customer	

品名 Product	E-Fuse 集成四通道智能高边驱动的电子保险丝
系列 Series	HSD36xx Series

料号Part No.		规格描述Specification	备注Remark
蓝宝 LB fuse	HSD3620Q32	HSD36V SC5A PC 20A	
客户		./>/-/	
Customer			

	商-蓝宝 er-LB fuse	零件承认章 Approval Signet	客户 Customer	零件承认章 Approval Signet
制作 Make	A/8M2			
审查 Check	- Ashoria			
批准 Approval	- Jus			

联络Contact						
业务Sales 电话Telephone 手机Cellphone 邮箱E-mail						
			lanbaofuse@163.com			
零件承认后敬请回签一份给我司留存。						

History of Change变更记录

NO.	日期 Date	描述 Description	版次 Edition	修改 modified by	审核 Checked by
1	2024.09.17	新制订	A/1	WANT.	-Agothos 18
2					
3					
4					
5					
6					
7			-6		
8					
9		7//			
10					
11					

集成四通道智能高边驱动的电子保险丝

关键特性

- 基础功能
 - Ron 典型值为 18mΩ的四通道高边开关
 - 高达 36V 的工作电压
 - 内置 10-bit ADC 可以对各通道电流/VCC 电压/芯片内部温度等进行实时检测
 - , 低至 100uA 每通道的 ECO 模式电流
 - 集成式 PWM 引擎支持独立相位偏移和频率 设置功能
 - 每通道独立可编程的灯泡/LED/电容式负载 充电模式
 - 通道输出可以被 DIx, OTP 和 SPI 多重与或灵活控制
 - 可编程的软启动和常规电流限制高阈值 (I_{LIMH})
 - 支持所有类型的汽车负载,包括电阻式、电 感式和电容性负载
 - AEC-Q100 认证

• 诊断功能

- 过载、对地短路以及线束保护的同步诊断
- 输出对 VCC 短路及关断状态负载脱落的异步 诊断
- ,内置的自测试模块可用于内部 LDO/时钟 /ADC/基准和线束保护功能的自检
- 保护功能
 - 可编程线束保护

(I^2T , T_{NOM} from 1.5A-6A I_{NOM} from 1s-300s)

- 芯片功率限制和内部过温关断
- 负载电流限制
- 过压钳位欠压关断
- 感性充电
- 容性负载消隐保护

应用场景

- 针对汽车应用的智能大电流保险丝的替代方案
- 可应用于电源之间的连接/隔离开关,尤其针 对汽车配电应用
- 工业 DCS 设备 DO 模块

说明

HSD3620Q32是一款内部集成Ron为18mΩ的MOSFET的四通道智能高边开关芯片。可以用于驱动电阻性、电感性和电容性等负载,芯片设置支持36V的输入电压耐受能力,可以耐受VCC引脚上的电压出现瞬间变化。通过SPI总线,可以实现编程、控制和诊断等功能。VCC电压和每个通道的输出电流检测可以通过内置的10-bit ADC来提供测量。

本产品配备有四个输出通道,可通过 SPI 或两个 DINX 引脚进行控制输出,并支持可调相位和频率的 PWM 输出。每个通道的 I²t 曲线都可以被单独设置。芯片可以通过 SPI 为每个通道单独设置可编软启动和正常 Iumn.

HSD3620Q32可以将耗散功率限制在安全水平,通过实时检测温度在过温实现关断保护。热关断可以配置为锁定关断或通过可编程时间限制自行启动。在电流过载情况下,输出电流限制可以关断输出保护芯片和负载。

通过 Para0/1 引脚或专用 OTP 位,

HSD3620Q32 也可以被配置为并行模式 (2+1+1,2+2,4+0)。

HSD3620Q32配备有一种被称为电容充电模式 (CCM)的工作模式,该模式在故障安全状态和正常设备状态下均可用,并且适用于配置为灯泡模式的通道。

器件信息

器件型号	封装	封装尺寸(标称值)
HSD3620Q32	QFN32	6mm*6mm

芯片系统原理框图

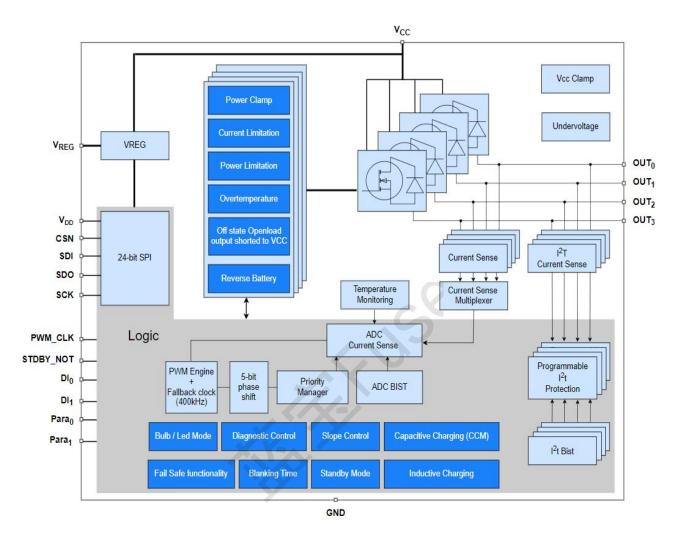


图 1. 芯片原理框图

1. 引脚配置及描述

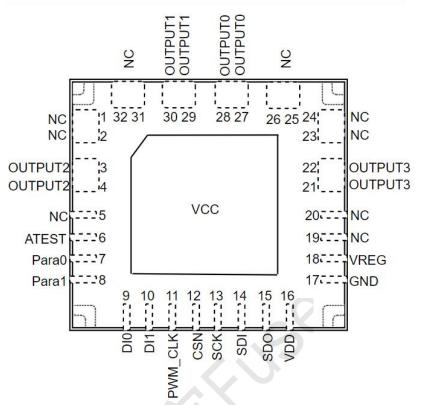


图 2. 引脚配置(顶视图)

表 1 引脚功能描述

引脚		I/O	引脚描述		
编号	名称	1,0	刀牌油位		
TAB	VCC	1	输入连接:背面的散热焊盘,直接与功率 MOSFET 的 Drain 端相连。 它还可以连接到用于反向电池保护的外置功率 MOSFET 的 Drain 端。		
1,2,5,6,19,20, 23-26,31,32	NC	I	此引脚 NC 不连接,		
3,4	OUTPUT2	0	功率 OUTPUT 2:直接连接到通道 2 的功率 MOSFET 的 Source 端 。		
7,8	ParaO,Para1	1	并行输出控制:此引脚可以将不同的通道配置为并行模式。		
9,10	DI0,DI1	1	直接输入:在 Fail-safe 模式下对 OUTx 进行直接控制。在 Normal 模式下,可配置为与相关 SPI OUTX 控制位进行"或"组合。		
11	PWM_CLK	1	PWM 模块的外部时钟。		
12	CSN	1	SPI 的片选信号(低电平有效)。		
13	SCK	1	SPI 的串行时钟。		
14	SDI	1	SPI 的串行数据输入:在 SCK(串行时钟)的上升沿,将数据串行传输到设备中以进行写入。		
15	SDO	О	SPI 串行数据输出:在 SCK(串行时钟)的下降沿,将数据从设备中串行输出。		
16	VDD	1	SPI 接口的直流电源输入:兼容 3.3V 和 5V,此电源一般与 MCU 主控共用。		
17	GND	1	地:该引脚用作设备中数字逻辑部分的地连接。		
18	VREG	I	由 VCC 产生的内置预调节器(4.7V)的直流输出,用于为 VREG 引脚和数字控制电路供电。请在该引脚附近(相对于设备接地)串联一个低 ESR 电容器(2μF)和一个电阻器(120Ω),此电源不能对外驱动其他电路电源使用。		
21,22	OUTPUT3	0	功率 OUTPUT 3:直接连接到通道 3 的功率 MOSFET 的 Source 端 。		

Preliminary Datasheet

-	_		
27,28	OUTPUT0	0	功率 OUTPUT 0: 直接连接到通道 0 的功率 MOSFET 的 Source 端 。
29,30	OUTPUT1	0	功率 OUTPUT 1: 直接连接到通道 1 的功率 MOSFET 的 Source 端 。

2. 电气特性

表 2 电气特性

	44 F1	25 MI	A Z TE (TI) IE		规格		34 (2-
	符号	参数	测试条件	最小值	典型值	最大值	単位
	V _{cc}	工作电源电压	工作电源电压	4	13	36	V
	V_{damp}	Vcc 钳位电压	_{СС} =20mA І _{ОИТ} =0А, Т _Ј =-40°С	37		40.5	V
	V clamp	ACC 担顶-672	I _{cc} =20mA ,I _{оит} =0A , 25°С<Т _J <150°С	37	39.5	42.5	V
	V _{CC_POR_ON}	Vcc 上电电压	-40°C <tյ<85°c< td=""><td>3.85</td><td>3.9</td><td>3.95</td><td>V</td></tյ<85°c<>	3.85	3.9	3.95	V
	V _{CC_POR_OFF}	Vcc 下电电压	-40°C <t<sub>J<85°C</t<sub>	3.65	3.7	3.75	V
	V _{CC_HYST}	Vcc 滞后关机电压			0.2		V
供电电压	V _{DD}	V _{DD} 工作电源电压	支持 3.3V 和 5.5V 模式	3	3.3/5	5.5	V
	V _{DD_POR_ON}	V _{DD} 上电电压	-40°C <t<sub>J<85°C</t<sub>	2.5	2.6	2.7	V
	V _{DD_POR_OFF}	V _{DD} 下电电压	-40°C <tյ<85°c< td=""><td>2.3</td><td>2.4</td><td>2.5</td><td>V</td></tյ<85°c<>	2.3	2.4	2.5	V
	V _{DD_HYST}	V _{DD} 滞后关机电压	///-/		0.2		V
	T_{PWRON}	芯片上电初始化时间	V _{cc} =13V ,T _J =25℃		1	2	ms
	V_{REG}	调节器输出			4.7		V
	l _{Shutdown}	关机模式电流	V _{cc} =13V ,T _J =25 °C ,V _{oυτ} = open		1		uA
	I _{Sleep}	睡眠模式电流	V:c=13V ,Tj=25℃,Vout = open		40		uA
模式电流	I _{Bulb}	灯泡模式电流	ON-state (所有通道关 引), V _{CC} = 13 V, V _{DD} = 5 V, I _{OUT} = 0 A		2	3.3	mA
	I _{ECO}	ECO 模式电流 (低能耗模式)	V _{cc} =13V ,T _J =25℃, ECO 模式 lout = 0	100uA/单个通道开启 200uA/四个通道开启			uA
	l _{L(off)}	关断状态输出电流	V _{DD} = 0 V, V _{CC} = 13 V, T _J = 125 C (每个通道)			2.7	uA
			l _{ouт} = 2.5 A, T _J = 25 ℃,灯 泡模式		20		mΩ
输出特性	R _{ON}	开机状态阻抗	I _{оит} = 2.5 A, T _J = 150 'С , 灯泡模式		30	35	mΩ
			I _{OUT} = 2.5 A, T _J = 25 °C , LED 模式		70		mΩ

Preliminary Datasheet

					Preliminary Datasnee			
			I _{OUT} = 2.5 A, T _J = 150 °C , LED 模式		120	130	mΩ	
		V # 1 >>	单个通道, T _a = 125 C	5	6		А	
	Iconst	连续工作电流	四个通道并联, T _a = 125 °C	20	TBD		A	
			V _{cc} = 16V, T _J = 25 °C		38		А	
		灯边华大下古法信的	V _{CC} = 16 V, T _J = 150 C		29		А	
	I _{ШМН} СНО,1,2,3 灯泡模式	灯泡状态下直流短路 电流	V _{CC} = 19V, T _J = 25°C		29		А	
			V _{CC} = 19 V, T _J = 150 °C		20		А	
			V _{CC} = 16V, T _J = 25 C		10		А	
	I _{I IMH _CH0,1,2,3}	LED 模式直流短路电	V _{CC} = 16 V, T _J = 150 °C		7.5		А	
	LED 模式	流	V _{cc} = 19V, T _J = 25 °C		5		А	
		CCM 模式直流短路电	V _{CC} = 19 V, T _J = 150°C		3.75		А	
			V _{CC} = 16V, T _J = 25 °C		20		А	
	ILIMH_CH0,1,2,3		V _{CC} = 16 V, T _J = 150 C		15		А	
	CCM 模式	流	V _{cc} = 19V, T _J = 25 'C		10		А	
			V _{CC} = 19 V, T _J = 150 °C		7.5		А	
	Avccdet	VCC 监测精度	4V <v<sub>CC<18V, -40°C<t<sub>J<150°C</t<sub></v<sub>		±1.5	±2	%	
사			0-2A ,V _{CC} =13V			±20	%	
检测	Aioutdet	A _{IOUTDET} 通道电流检测精度	2-4A ,V _{CC} =13V			±10	%	
			4-6A ,V _{CC} =13V			±5	%	
	ΔТрим	结温温差触发功率限	V _{cc} = 16 V		80		c	
	制保护阈值	V _{cc} = 19V		55		ဗ		
	ΔT _{PUMR}	- 结温温差重置功率限	Vcc = 16 V		60		င	
保护	□ · PUMK	制保护阈值	V _{cc} = 19V		35		c	
	T _{TSD} 过温关断温度阈值 过温关断温度重置阈 值	过温关断温度阈值	V _{cc} = 13 V	165	175	185	c	
		过温关断温度重置阈 值	V _{cc} = 13 V	145	155	165	°C	

Preliminary Datasheet

	T _{HYST}	热关断迟滞			20		%
	A _{I2T}	l²t 响应时间精度	I _{NOM=} 1.5-6A, t _{NOM=} 1-300s; 一共 64 个选择项	-40%		60%	%
	V _{DEMAG}	关断输出电压钳位	$I_{OUT} = 2 \text{ A, } V_{INO,1} = 0 \text{ V, L} = 6 \text{ mH, } 25^{\circ}\text{C} < T_{J} < 150^{\circ}\text{C}$	VCC - 36	VCC - 38	VCC - 42	V
DIAMA	PWM _{RES}	PWM 分辨率				±0.1	%
PWM -	PWM _{CLK}	内部 PWM 时钟范围		300	400	500	kHz

3. 绝对最大额定值

(所有电压均相对于 VSS)

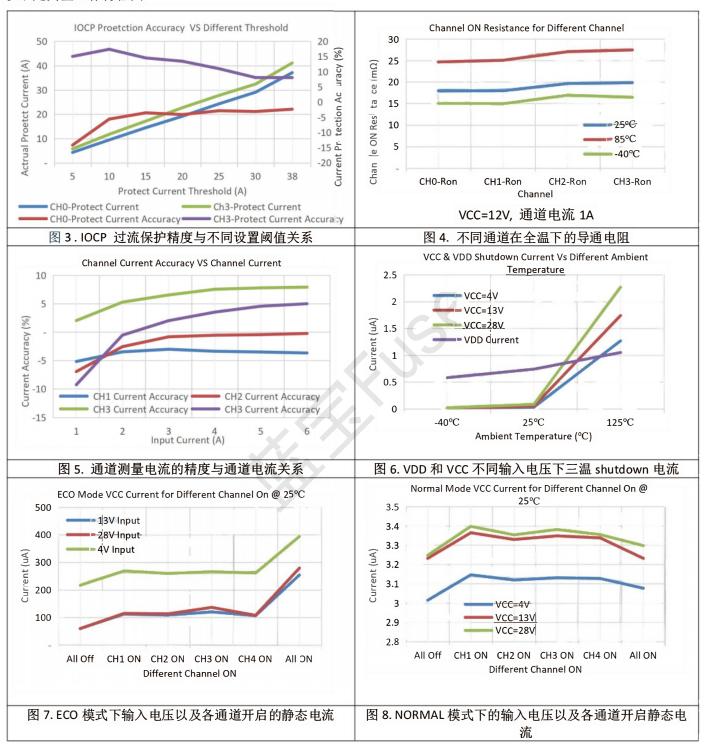
表 3 最大额定值

符号	参数	数值	单位
V_{CC}	直流供电电压	36	V
-V _{CC}	反向直流供电电压 (无外部元件时)	0.3	V
I _{OUT0,1,2,3}	最大直流输出电流	内部限制	А
I _{PWM_CLK}	直流 PWM_CLK 引脚电流	+3/-1	mA
V _{SDO}	直流 SPI 引脚电压	VDD + 0.3	V
-V _{SDO}	反向直流 SPI 引脚电压	0.3	V
I _{SDI,CSN,SCK}	直流 SPI 引脚电流	+10/-1	mA
I _{DD}	直流 VDD 引脚电流	+10/-1	mA
V_{DD}	直流 SPI I/O 控制供电	5.5	V
-V _{DD}	反向 SPI I/O 控制供电	0.3	V
I _{DI0,1}	直流直接输入电流	+10/-1	mA
I _{VREG}	直流 VREG 引脚电流	-10/1	mA
V_{VREG}	直流数字控制供电	5.5	V
-Vvreg	反向数字控制供电	0.3	V
I _{LATCH_UP}	闩锁电流	±100	mA
_	最大开关能量(单周期): T _{Ist irt} = 150 'C, LED 模式	3	
EMAX	最大开关能量(单周期);T _{Jstart} = 150 'C,灯泡模式	14	mJ

Preliminary Datasheet

ESD	净电泄放 (ANSI-ESDA-JEDEC-JS-001-2014)	DI0,1	2000	
		VDD, VREG	2000	
		CSN, SDI, SCK, SDO	2000	V
		OUT0,1,2,3	4000	
		VCC	4000	
Tı	工作结温范围		-40 to 150	℃
T _{stg}	储存结温范围	-55 to 150	°C	

4. 散热信息


表 4 散热信息

参数	值
封装	QFN-32-EPAD
θ. 结到环境的热阻	TBD°C/W
θ」。 结到外壳的热阻	TBD C/W
θ ₁₈ 结到基板的热阻	TBD°C/W

5. 典型工作特性

以下是典型工作特性图

6. 功能描述

6.1. 线束保护(I2T)

HSD3620Q32内置有可编程保险丝功能,该保护基于预定义的时间-电流曲线,在熔断式保险丝的数据表中通常被称为 I2T 保护。其目的是使电子开关的关断行为与熔断式保险丝的关断行为相匹配。实际的 I2T 保护曲线的形状是阶梯状曲线,该形状由两个可配置参数 I_{NO} 和 t_{NOM} 决定。这两个参数都可以通过 SPI FSITCRx 寄存器进行访问,并且是可读写的。

6.1.1. 标称时间 t_{NOM}

默认的 t_{NOM} 参数由三个一次性可编程位设定(每个通道分别为 t_{NOM0}, t_{NOM1}, t_{NOM2}),其默认值为 300s, 表 5 t_{NOM} 设置描述

标称时间值	t _{NOM0}	t _{NOM1}	t _{NOM2}
300 s (默认)	0	0	0
257s	0	0	1
214s	0	1	0
172s	0	1	1
129s	1	0	0
86s	1	0	1
44s	1	1	0
1s	1	1	1

6.1.2. 标称电流 I_{NOM}

默认的 I_{NOM} 参数是由三个一次性可编程位设定(每个通道分别为 I_{NOM0}, I_{NOM1}, I_{NOM2})。其默认值为 6A。 表 6 XX I_{NOM} 设置描述

	4 - 1 - 1 1 1 1 2 1 1 2 1 1		
标称电流值	INOMO	I _{NOM1}	I _{NOM2}
1.5A	0	0	1
2A	0	1	0
2.5A	0	1	1
3A	1	0	0
3.5A	1	0	1
4A	1	1	0
5A	1	1	1
6A (默认值)	0	0	0

通过改变 I_{NOM} 的值,可以在 y 轴方向上移动 I^{2} t 保护曲线。下图展示了该配置所能覆盖的 I^{2} t 总范围,范围从 $I_{NOM\ MI}$ = 1.5 A, $I_{NOM\ MIN}$ = 1 s 到 $I_{NOM\ MAX}$ = 6 A, $I_{NOM\ MAX}$ = 300 s。

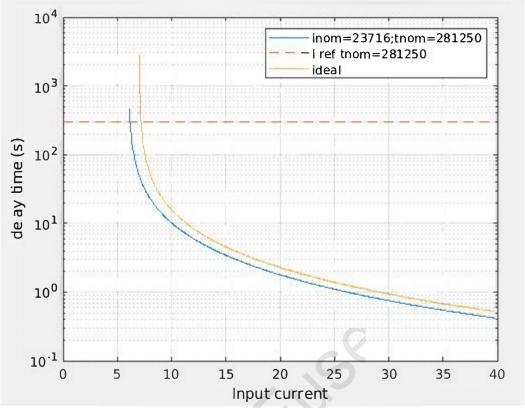


图 9 12t 典型阶梯曲线 保护电流 VS 保护时间

6.2. 状态机与工作模式

HSD3620Q32配置有多个操作模式,例如 Normal 模式、Sleep 模式、ECO 节能模式、Fail-safe 和 Standby模式,

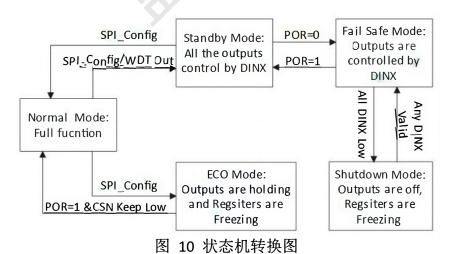


表 7 操作模式描述

操作模式	进入条件	退出条件	状态
Normal 模式	如果设备处于 Standby 状态,并且 SPI	• 如果 SPI 清空了 EN 位 (EN 位	输出: 根据 SPI 配置变化
	发送以下序列:	=0),则设备进入 Standby 模式。	SPI: 可用
	第一个指令:	• 如果 WDTB 在超时时间 twotr 内	寄存器:可读/可写,在发送
	• UNLOCK = 1	没有被切换(即没有触发看门狗	SW 重置命令时清零。
	第二个指令:	定时器复位),设备将进入	诊断: 通过 SPI 配置,提供过
	• GOSTBY = 0 且 EN = 1	Standby 模式,	压/欠压、过流、过温和 I2T 保

Preliminary Datasheet

	本操作流程可以避免意外进入 Normal模式,		护。 电流: VCC 和 VDD 常规电流
	如果设备处于 ECO 节能模式,POR =1 并且 CSN 保持低电平超过 60ms,则设 备进入 Standby 模式。		
Standby 模	如果设备处于 Normal 状态,并且 SPI	•若 VREG < VREG_POR_L,设备	 输出:根据 DIx 变化
式 式	发送以下序列:	将进入 fail-safe 模式,	SPI: 可读/可写,在发送 SW
	及区以下77791: • 如果 SPI 清空了 EN 位 (EN 位 = 0),	特近八 lall-sale 侯式,	5F1: 时候/时间,在及处 5W 重置命令时清零。
	则设备进入 Standby 模式。	 SPI 发送以下序列:	里直叩マ門何令。 寄存器: 可用
	•如果 WDTB 在超时时间 twptb 内没有被	第一次送送 77 73	砂断: 可加: 可加 10 10 10 10 10 10 10 1
	切换(即没有触发看门狗定时器复位),	• UNLOCK = 1	压/欠压、过流、过温和 I2T 保
	设备将进入 Standby 模式。	第二个指令:	左/八定、足机、足皿和 121 护
	校面的近天 Standby 快风。	• GOSTBY = 0 AND EN = 1	ν 电流: VCC 和 VDD 常规电流
	 若设备处于 Fail-safe 模式:	本操作流程可以避免意外进入	电机: 700年700年700年
	• 如果 VREG > VREG _ POR_H, 则设备进	Normal 模式。	
	入 Standby 模式。		
ECO 节能模	若设备处于 Normal 模式,并且 SPI 发	若 POR =1 且 CSN 保持低电平	输出:根据 Normal 模式的输
式	送以下序列:	超过 60ms,设备进入 Normal 模	出状态
	•如果SPI清空了ECO 位(ECO 位 = 1),	式	SPI: 不可用
	则设备进入 ECO 节能模式。		寄存器:冻结
		. 65	诊断: 过流、过温保护开启
			电流: VCC 低电流
Fail-safe 模	若设备处于 Standby 模式:	•若 VREG >VREG_POR_H,设备	输出:根据 Dlx 决定
式	•若 VREG < VREG_POR_L, 则设备进	进入 Standby 模式	SPI: 不可用
	入 Fail-safe 模式。		寄存器: 冻结
	若设备处于关机模式	•若所有 Dlx 无效,设备进入	诊断: 过流、过温保护开启
	•若任何 Dlx 有效(不为 0)	Shutdown 模式	电流: VCC 正常电流
Shutdown 模	若设备处于 Fail-safe 模式	若任何 Dlx 有效,设备进入	输出:全部关闭
式	•若所有 Dlx 无效,设备进入关机模式	Fail-safe 模式	SPI: 不可用
			寄存器:清空
			电流: VCC 和 VDD 最小电流

7. 电容充电模式(CCM)

CCM 模式旨在满足大功率灯泡等容性负载的需求。由于灯泡板具有高达 mF 级的输入电容,CCM 可以使得 HSD3620Q32芯片提供远大于正常工作电流的瞬态的浪涌充电电流。

7.1. CCM 的电流能力

CCM 模式可以支持最大电流 0.4*ILIM 的最大电流。

7.2. TLIM 消隐时间设置

CCM 模式可以支持消隐时间设置,参考 PROTECT(0x30)寄存器设置。

表 8 CCM 模式主要性能描述

符号	参数	测试条件	最小	典型	最大	单位
I _{CCM}	充电电流	CCM 可用,记录可配置		0.4*I _{LIM}		Α
T _{ccm_blanking}	CCM 充电时间	记录可配置	1		100	ms
C _{MAX}	最大电容充电模式	VCC=16v TJ=85℃,充电时		2.2mF		

8. 保护功能

芯片提供内置的诸多保护功能,这些保护功能专为防止IC或者负载在故障条件下遭到损坏而设计。

8.1. 地丢失

在高边驱动系统中存在有两个地(Ground)连接,一个是设备(芯片所在的硬件设备)的地,另一个是模块(负载设备)的地。

如果模块地丢失,但设备仍然与地相连,则设备会自动关闭(如果此前处于开机状态)或继续保持关闭状态,以实现自我保护,而不考虑其原始配置。在此种状态下,电流 IOUT_{GND} 可能会从 DMOS 流出,因此建议在 GND 引脚上连接一个并联二极管和电阻。

如果设备地丢失,建议在微控制器和设备之间串联电阻,以确保各个通道能够顺利关闭。

8.2. 欠压保护

如果供电电压低于欠压电压阈值 VS_{UV},则芯片内部逻辑关断。一旦供电电压高于欠压电压阈值,设备就可以被开启。

8.3. 反向极性保护

芯片存在有三种反向情况。

当 VCC 反向极性时,一个与二极管并联的电阻连接到 GND,可以限制反向电流。

第二种反向极性是 GPIO 侧,流向地和数字逻辑引脚的电流必须在 MCU 和设备之间用一个外部电阻来限制。

第三种反向极性是输出负载,功率 DMOS 的体二极管会导致功率损耗。流过这个体二极管的电流由负载本身限制。如果负载电流超过了体二极管的功率承受能力,可能会导致热损伤。一个从电源到 VCC 的二极管可以阻值这种类型的反向电流。在二极管正常状态下的反向功率损耗情况下,使用 PMOS 或理想二极管可以改善功率损耗。

8.4. 电流限制保护

在非电容充电模式(CCM)下,通过将电流限制在开关允许的最大电流 I_{LIM} 内,来维持开关中的瞬时功率处于安全值。如果电流超过 I_{LIM},相关输出将立即关闭。在电容充电模式(CCM)下,存在一段消隐时间,在这个时间内允许输出电流暂时超过 I_{LIM}。

8.5. 温度与功率限制保护

每个通道都包含一个绝对 Trso 温度传感器和一个动态ΔT_{PLIM} 温度传感器。任何一个温度的激活都将导致过热通道关闭,以防止损坏。任何保护性关闭都会锁定输出,直到温度达到可接受的绝对值 Trso 并且动态ΔT_{PLIMB} 达到可重置功率限制的值。

如果通道温度和中央传感器之间的温度差 ΔTPLIM 超过阈值,本产品将报告通道功率限制警告。

8.6. 出现保护后的恢复

当出现异常后,通过 PROTECT (0x30)寄存器 RESTART[2:0] Bit 可以支持重启时间延迟,延迟可以保证不会由于重复开启造成芯片的热损坏。

9. 诊断功能

本产品提供带有 SPI 通信接口和内部 ADC 模块的诊断功能。

9.1. 导通状态下检测开路负载

数字电流检测功能可以读取 MOSFET 的电流和 V_{DS} 电压。在导通状态下,正常输出时,由于 R_{DSon} 阻抗很低, V_{DS} 电压很低。但是如果负载开路, V_{DS} 将超过固定阈值(1.5V),通过读取寄存器 OUTSRX 的 Bit VDSHSRX 可以获取到负载开路。

9.2. 关断状态检测的开路负载

芯片可以为每个通道开启或关闭一个 1.5mA 的内部上拉电流源,通过设置寄存器 OUTCTRCx 的 bit OLOFFCRx 使能。在通道关闭 175us 后, V_{DS} 检测电路开始工作,进行关断状态下开路负载检测。在负载开路状态下,当电流源被打开时, V_{DS} 电压会低于固定阈值电压(1.5V)。当电流源被关闭时, V_{DS} 电压会高于固定阈值电压(1.5V)。反之正常情况下,无论内部电流源是开启还是关闭, V_{DS} 电压会始终高于固定阈值电压。但是,该检测对 VCC 和正常状态负载存在限制。假设负载为 5kΩ,VCC 为 12V, V_{DS} = 12v-1.5mA*5kΩ= 4.5V,在这种情况下,检测是有效的。因此,应确保 V_{DS} =VCC-1.5mA* R_{LOAD} 大于 1.5V,以保证检测有效性。所以在应用中,为了保证此功能的有效性,可以外接一个阻值小于 6.8kΩ的电阻。

9.3. 关断状态检测输出对 VCC 短路

当 OUT 端直接连接下拉电阻(如 $6.8k\Omega$),由于输出关闭,在输出与 VCC 短路状态下, V_{DS} 电压会低于固定阈值电压(1.5V)。在正常状态下,MOSFET 的 Source 通过下拉电阻接地, V_{DS} 电压会远远高于固定阈值电压(1.5V)。

当输出对 VCC 短路和负载开路同时发生时,可以开启和关闭内拉上拉电流源来判断。

10. SPI 工作

在 Normal 模式和 Standby 模式下,系统微控制器可以通过 SPI 通信接口配置设备并获取诊断数据。SPI 通信接口包含 CSN, SDI,SDO 和 SCK 信号线。

10.1. SPI 模式

芯片支持 CPOL=0 和 CPHA=0 模式,这意味着在空闲模式下,SCK 是低电平,当第一个上升沿来临时,第一个有效数据将出现在 SDI/SDO 引脚上。

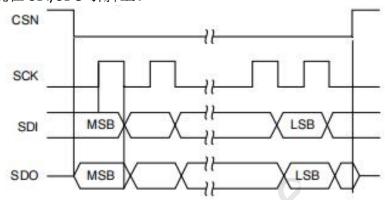


Figure 11 SPI Operation mode

10.2. SPI 协议

芯片支持 24-bit 的 SPI 模式。SDI 格式以一个命令字节开始,命令字节首先包含两个操作码位(OCO, OC1),用于指定操作类型(读,写,读取并清除状态,读取设备信息),紧随其后的是一个 6-bit 的地址(A5:A0)。命令字节之后是两个数据字节(D15:D8)和(D7:D0),D0 是奇偶校验位。

表 9 命令类型

工作模式				地	址			Databyte1	Databyte0
OC1	OC2	A5	A4	A3	A2	A1	A0	D15:D8	D7:D0

表 10 工作模式

OC1	OC2	工作模式
0	0	写操作
0	1	读操作
1	0	读取并清除状态操作
1	1	读取设备信息

11. 寄存器列表

芯片设置有三个系列存储单元,设备配置的 RAM 寄存器、设备状态的全局状态寄存器以及设备识别的 ROM 寄存器。

11.1. 全局状态字节描述

以下寄存器的设置用于向微控制器报告全局故障。

表 11 全局状态字节

		名称	功能描述	相关寄存器	默认值
bit7	MSB	GSBN	GSBN 是 Bit 0 到 Bit 6 的或非。这个位也可以用作全局状态标志。如果从 Bit 0 到 Bit 6 中的任意一位是 1,这个位将为 0。		
bit6		RSTB	RSTB 表示设备已重置。 任何有效的 SPI 通信都会自动清除。	0x20h RST	1
bit5		DIGE	数字功能异常: EFUSE 检测错误, SPI 错误, SCK 计数器或 SDI 粘连错误;通过任何有效的 SPI 通信或 EFUSE 检查有效复位,该 bit 将被自动清除。	0x20h SPIE 0x39h BISTSR	0
bit4		TSD/PL	当设备处于热关断或功率限制状态时,该 bit 被置位。	0x20: 23h CHFBSR, IOCPSR	0
bit3		ITLOFF	每个通道的 1²t 锁存器的逻辑"或"组合。	0x20: 23h ITOFFSR	0
bit2		LOFF	当一个或多个通道被锁定关闭时,该 bit 被置位。	0x20: 23h CHLOFFTCR	0
bit1		TCASE	如果芯片温度超过阈值(120℃),该 bit 位被设置,它可以用作温度重报警。当芯片温度降低至外壳温度复位阈值以下时,该 bit 位被自动清除。	0x20: 23h TW1	0
bit0	LSB	FS	当设备工作于 Standby 状态时,该 bit 被置位。		1

11.2. ROM

ROM 存储器用于设备识别 D.

表 12 ROM 寄存器定义

代号	名称	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	参数			
00h	MANU		制造商代号										
01h	PRODUCT		产品代号										
02h	REVISION		产品版本										
03h	DIEID_0		DIE ID-0										
04h	DIEID_1		DIE ID-1										
05h	DIEID_2		DIE ID-2										
06h	DIEID_3				DIE ID)-3							
3ch	SEFUSE_REG4	= 01, 并联 = 00, 并联 bit1:0 Paral = 00, 不并	bit4:3 Para Sel = 01, 并联模式被 bit 1:0 控制, = 00, 并联模式被硬件引脚控制; bit1:0 Paral Mode = 00, 不并联 =01, CH1 和 CH2 并联										

		=11, 全部通道并联					
3eh	SEFUSE_REG6	Bit7:6 - DIOTP CH3 的配置, = 00,10: 通道 3 受到 DI1 控制, =01: 通道 3 受到 DI0 的控制, =11 通道全部关闭 Bit5:4 - DIOTP CH2 的配置, = 00,10: 通道 2 受到 DI1 控制, 通道 2 受到 DI0 的控制,=11 通道全部关闭 Bit3:2 - DIOTP CH1 的配置, = 10: 通道 1 受到 DI1 控制, =00, 01: 通道 1 受到 DI0 控制,=11 通道全部关闭 Bit1:0 - DIOTP CH0 的配置, = 10: 通道 0 受到 DI1 控制, =00, 01: 通道 0 受到 DI0 控制,=11 通道全部关闭					

11.3. RAM

RAM 寄存器在设备工作时可读可写。

表 13 RAM 寄存器定义

地址	R/W/C 状态	名称	功能描述	默认参数
00h	R/W	OUTCTRCR0	通道 0 输出配置 - 占空比配置,上拉电流源启用,看门狗启用	0x0000
01h	R/W	OUTCTRCR1	通道1输出配置 - 占空比配置,上拉电流源启用,看门狗启用	0x0000
02h	R/W	OUTCTRCR2	通道 2 输出配置 - 占空比配置,上拉电流源启用,看门狗启用	0x0000
03h	R/W	OUTCTRCR3	通道4输出配置-占空比配置,上拉电流源启用,看门狗启用	0x0000
08h	R/W	OUTCFGR0	通道 0 输出配置 - PWM 输出相位, PWM 分频器, 灯泡/LED 模式, DIx 控制	0x0000
09h	R/W	OUTCFGR1	通道 1 输出配置 - PWM 输出相位, PWM 分频器, 灯泡/LED 模式, DIx 控制	0x0000
0ah	R/W	OUTCFGR2	通道 2 输出配置 - PWM 输出相位, PWM 分频器, 灯泡/LED 模式, DIx 控制	0x0000
0bh	R/W	OUTCFGR3	通道 3 输出配置 - PWM 输出相位, PWM 分频器, 灯泡/LED 模式, DIx 控制	0x0000
10h	R/W	CHLOFFTCR0	通道 0,1,2 在触发保护后的锁定时间	0x0000
11h	R/W	CHLOFFTCR1	通道 3 在触发保护后的锁定时间	0x0000
12h	R/W	UNLOCK_CFG	寄存器设置解锁	0x0000
13h	R/W	SOCR	通道输出模式控制	0x0000
14h	R/W	CTRL	通道高级控制	0x0000
15h	R/W	FSITCR0	通道 0 并联模式,Dlx 一次性可编程 (OTP),l2t I _{NOM} 与 l2t T _{NOM} 设置	0x0000
16h	R/W	FSITCR1	通道 1 并联模式,Dlx 一次性可编程 (OTP),l2t I _{NOM} 与 l2t T _{NOM} 设置	0x0000

Preliminary Datasheet

17h	R/W	FSITCR2	通道 2 并联模式,Dlx 一次性可编程(OTP),I2t I _{NOM} 与 I2t T _{NOM} 设置	0x0000
18h	R/W	FSITCR3	通道 3 并联模式,Dlx 一次性可编程(OTP),I2t I _{NOM} 与 I2t T _{NOM} 设置	0x0000
20h	R/W	OUTSR0	通道0状态	0x0000
21h	R/W	OUTSR1	通道1状态	0x0000
22h	R/W	OUTSR2	通道2状态	0x0000
23h	R/W	OUTSR3	通道3状态	0x0000
24h	R	ADC_ST	通道与功率限制警告	0x0000
27h	R	VCCSR	VCC 输入电压数据	0x0000
28h	R	ADC0SR	通道 0 电流数据与通道输出状态	0x0000
29h	R	ADC1SR	通道1电流数据与通道输出状态	0x0000
2ah	R	ADC2SR	通道2电流数据与通道输出状态	0x0000
2bh	R	ADC3SR	通道 3 电流数据与通道输出状态	0x0000
30h	R/W	PROTECT	输出保护-LED模式消隐时间,灯泡模式消隐时间,CCM 充电时间,保护重启时间	0x 5E04
31h	R/C	ADC9SR	外壳温度数据	0x0000
32h	R/C	ADCLSR	低电流自检数据	0x0000
33h	R/C	ADCMSR	中电流自检数据	0x0000
34h	R/C	ADCHSR	高电流自检数据	0x0000
35h	R	I2TCNT	l2t 计数器	0x0000
36h	R/C	ITCNTSR	I2t 自检	0x0000

11.4. RAM 细节描述

以下内容详细说明了芯片的 RAM 寄存器及其对应的位

Preliminary Datasheet

OUTCTRCRx 输出控制	制寄存器
----------------	------

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RESERVED	RESERVED	DUTYCR9	DUTYCR8	DUTYCR7	DUTYCR6	DUTYCR5	DUTYCR4	DUTYCR3	DUTYCR2	DUTYCR1	DUTYCRO	RESERVED	OLOFFCR	WDTB	PARITY
	-	读/写								-	读,	写	读		

[15:14]	- 保留							
[13:4]	PWM 输出占空比设置参数, 0x000h 为 0%,, 0x3FF 为 100%							
[3]	- 保留							
	OLOFFCR 位: 该上拉电流源可用于导线断开或输出短路检测。							
[2]	1: 对应通道 X 上的内部上拉电流源使能							
	0: 对应通道 X 上的内部上拉电流源关闭							
[1]	看门狗翻转位							
[0]	奇偶校验位							

OUTCFGRx

通道 0-3 的输出配置寄存器

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SLOPECR1	SLOPECRO	RESERVED	СНРНА4	СНРНАЗ	СНРНА2	СНРНА1	СНРНАО	RESERVED	RESERVED	PWMFCY1	PWMFCY0	CCR	DIENCR	RESERVED	PARITY
读	:/写	-		读/写								-	读		

[15:14]	切换斜率控制,参考切换斜率控制表(表 19)									
[13]	-保留									
	通道相位值 [4:0]									
	00001: 通道相位 = 0/32									
	00010:通道相位 = 1/32									
[42.0]	 11110: 通道相位 = 30/32									
[12:8]										
	11111: 通道相位 = 31/32 每个输出都有其电流数字转换的特定模式。该模式通过 OUTCFGRx 中的两个专用位 SPCR1 和 SPCR0 来定义。									
[7:6]	-保留									
	PWM 频率选择 [1:0]									
	每个输出在其 PWM 功能下都有一个特定的占空比。这个占空比模式是通过 OUTCFGRx 寄存器中的两个专用位 PWMFCY1 和 PWMFCY0 来定义的。									
	PWMFCY1: 0 PWM 频率比例: 1024									
[5:4]	PWMFCY1: 0 PWMFCY0: 1 = PWM 频率比例: 2048									
	PWMFCY1: 1 PWMFCY0: 0 = PWM 频率比例: 4096									
	PWMFCY1: 1 PWMFCY0: 1 = PWM 频率比例: 512									
	选定通道的输出频率将是 PWM 时钟频率根据所定义的占空比分频而来。									
	设置通道配置(灯泡/LED)									
101	0: 灯泡模式									
[3]	1: LED 模式									
	当通道处于并联模式时,LED 模式会被内部强制设置为 0。当 LED 模式启用时,CCM 模式和 I2T 模式会被禁用。									
	Normal 模式下,直接输入可用(根据 OTP 映射)									
	每个输出都通过 OTP 编程了直接输入分配,以确保故障安全操作。									
[2]	在 Fail-safe 模式下,任何输出都可以被编程为始终关闭,或者根据 DIO 引脚的状态,或者根据 DI1 引脚的状态。这个编程分配可以从 OUTSRx 状态寄存器的 DIOTP 中读取。当 DIENCR 位被设置时,分配给输出的 DIx 引脚状态会与 SOCR/PHASE/DUTYCYCLE 的组合进行逻辑"或"运算,以控制输出状态。									
	在 Fail-safe 模式下,对 DIX 引脚施加逻辑电平 1/0,可以使与之关联且由 OTP 选择的输出打开/关闭。									
[1]	-保留									
[0]	奇偶校验位									

CHLOFFTCRxx

通道锁存关闭定时器控制寄存器

在功率限制或热关断事件发生时,每个通道的消隐窗口持续时间(t_{blanking})可以根据以下表格进行设置:

表 14 可编程消隐窗口持续时间(tblanking)值

CHLOFFTCRx3	CHLOFFTCRx2	CHLOFFTCRx1	CHLOFFTCRx0	消隐时间
0	0	0	0	锁存关闭 (默认)
0	0	0	1	16 ms
0	0	1	0	32 ms
1	1	1	0	224 ms
1	1	1	1	240 ms

CHLOFFTCR 0x, 1x, 2x

通道锁存关闭定时器控制寄存器 0x, 1x, 2x

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CHLOFFTCR23	CHLOFFTCR22	CHLOFFTCR21	CHLOFFTCR20	CHLOFFTCR13	CHLOFFTCR12	CHLOFFTCR11	CHLOFFTCR10	CHLOFFTCR03	CHLOFFTCR02	CHLOFFTCR01	CHLOFFTCR00	RESERVED	RESERVED	RESERVED	PARITY
	读/写											-		读	

CHLOFFTCR 3x

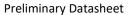
通道锁存关闭定时器控制寄存器 3x

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RESERVED	CHLOFFTCR33	CHLOFFTCR32	CHLOFFTCR31	CHLOFFTCR30	RESERVED	RESERVED	RESERVED	PARITY							
				-					读	/写			-		读

[15:8]	保留
[7:4]	在功率限制或热关断情况下,为对应通道3配置输出状态或延迟
[3:1]	保留
[0]	奇偶校验位

SOCR 通道控制寄存器

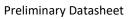
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
EXIT_CAPCR3	EXIT_CAPCR2	EXIT_CAPCR1	EXIT_CAPCR0	SOCR3	SOCR2	SOCR1	SOCR0	RESERVED	RESERVED	CAPCR3	CAPCR2	CAPCR1	CAPCR0	WDTB	PARITY
	读/写								-			读/写			读


[15]	退出通道 3 的电容充电模式(高电平有效)。此位会自动复位。
[14]	退出通道 2 的电容充电模式(高电平有效)。此位会自动复位。
[13]	退出通道1的电容充电模式(高电平有效)。此位会自动复位。
[12]	退出通道 0 的电容充电模式(高电平有效)。此位会自动复位。
	SOCR 位控制通道 3 的输出状态
[11]	1- 输出启用 0- 输出禁用
	SOCR 位控制通道 2 的输出状态
[10]	1- 输出启用 0- 输出禁用
	SOCR 位控制通道 1 的输出状态
[9]	1- 输出启用
	0- 输出禁用
	SOCR 位控制通道 0 的输出状态
[8]	1- 输出启用
	0- 输出禁用
[7:6]	保留
	通道3电容充电模式
	1- 启用
[5]	0- 禁用
	该位会自动复位。
	通道2电容充电模式
	1- 启用
[4]	0- 禁用
	该位会自动复位。
	通道1电容充电模式
[2]	1- 启用
[3]	0- 禁用
	该位会自动复位。
	通道 0 电容充电模式
[2]	1- 启用
	0- 禁用 该位会自动复位。
[1]	核位云目幼夏位。 看门狗翻转位
[1]	
[0]	奇偶校验位

CTRL 控制寄存器

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
GOSTSLEEP	UNLOCK	GOECO	GOBIST	EN	PWM_TRIG	NORMWTD1	NORMVTD0	LOCKENS	LOCKEN4	LOCKEN3	LOCKEN2	LOCKEN1	LOCKENO	PWM SYNC	PARITY
	读/写				读	读	/写			读	/写			写	读

	进入 Standby 模式。
	进入待机状态需要进行两次写访问:
[15]	1. 写入 UNLOCK = 1
	2. 写入 GOSLEEP = 1 且 EN = 0
	UNLOCK 位
[14]	UNLOCK 位允许受保护的 SPI(串行外设接口)事务。这意味着下一次 SPI 通信将自动清除此位,并防止对受保护的数据(例如斜率控制或灯泡/LED 模式)进行任何更改。因此,要修改受保护的数据,需要在第一次通信中设置 UNCLOCK 位,并在下一次通信期间写入受保护的数据。
[13]	进入 ECO 模式
	进入 ECO 模式需要进行两次写访问。
	1. 写入 UNLOCK = 1
	2. 写入 GOECO= 1 且 EN = 0
[12]	进入 BIST (内置自测试) 模式
	进入 BIST 状态需要进行两次写访问:
	1. 写入 UNLOCK = 1
	2. 写入 GOBIST= 1 1 - Normal 模式
	0 - Fail-safe 模式
	要进入 Normal 模式:
	1. 写入 UNLOCK=1
[11]	2. 写入 EN = 1
[10]	PWM_TRIG: PWM 触发模式 0: 根据 PWM 时钟周期的上升沿和相位移动配置来触发 PWM 1: 根据 PWM 时钟周期的下降沿和相位移动配置来触发 PWM
[9:8]	NORM_WTD:
	● 01: 启用看门狗
	● 其他: 保持先前状态
	保护事件状态:
	● LOCKEN5: I _{NOMX} ,T _{NOM} X 和 I _{LIM_LATCH} X 的锁定启用
	● LOCKEN4: 斜率控制 SLOPECRx 的锁定启用
	● LOCKEN3: 灯泡/LED 模式 CCRx 的锁定启用
	● LOCKEN2: 相位偏移 CHPHAx 的锁定启用
[7:2]	● LOCKEN1: 可配置消隐时间 CHLOFFTCRx 的锁定启用
	● LOCKENO: PWM 时钟同步的锁定期用
	当某个位被设置时(LOCKENx = 1),它用于受保护的转换:
	● 设置 UNLOCK 位
	● 修改相关配置寄存器
	当某个位被清除(LOCKENx = 0),这些配置寄存器可以通过标准写入命令来修改。
	PWM 时钟同步。
[1]	通过 PWM SYNC = 1 来清除 PWM 内部计时器。在下一次 SPI 通信时,该位会自动复位。
[0]	奇偶校验位



FSITCRx 故障安全与 I²t 电流寄存器

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	PARAL1	PARALO	DIOTP1x	DIOTP0x	INOM2x	INOM1x	INOMOX	TNOM2x	TNOM1x	TNOM0x	PARITY
		-				ì	卖				读	写			读

[15:11]	-
[10][9]	通道 x 并行模式选择,根据 OTP 设置或外接 SEL 引脚。
[8]	相关 DIx 输入描述位 1(根据 ROM 0x3E)。
[7]	相关 DIx 输入描述位 0(根据 ROM 0x3E)。
[6:4]	l²t 电流的 NOM 时间设置
[3:1]	l²t 曲线的 NOM 时间设置
[0]	奇偶校验位

OUTSRx

通道 0-3 的输出状态寄存器

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DIENSR	IOCPSR0	CAPCSRx	CHFBSRx	VDSHSRx	ITOFFSRx	OLPUSRx	CHLOFFSRx	RST	SPIE	PWMCLOCKLOW	RESERVED	TW3	TW2	TW1	PARITY
读	-		读		读/写	ì	· 卖		读/写				读		

[15]	Dix 输入状态,根据 OTP 分配情况关联 Dix 逻辑电平的映射。
[14]	IRQ_CHX_OCP, 通道 0 过流状态。
[13]	电容充电模式状态位
[12]	通道状态反馈状态,反馈了功率限制和过热状态的保护。
[11]	VDS 反馈状态。 feedback status. 当通道处于开启状态,如果输出电压 VOUTx 低于 VDSH_TH 阈值(= V _{CC} - 1.5 V),则 VCDHSRx 位为"1",这表示可能存在过载情况。 当通道处于关闭状态,如果输出电压 VOUTx 低于 VDSH_TH 阈值(= V _{CC} - 1.5 V),则 VDSHSRx 位为"0",这表示可能存在故障情况,即 通道可能处于 VCC/开载关断状态或处于开载状态。
[10]	当 I ² t 曲线保护激活并正在关闭通道 X 时,ITOFFSRx 为"1"。
[9]	输出上拉发生源状态,与上拉设置相同。
[8]	通道闭锁状态。当过载屏蔽时间已过且通道被闭锁时,此位被设置,要重新启用输出通道,必须清楚此位。对 OUTSRx 寄存器执行 SPI 读写操作不会清除此位。此位只能通过向对应的 CHLOFFTCRx 寄存器执行写操作来清除。
[7]	芯片复位状态
[6]	SPI 错误
[5]	PWM 时钟频率过低
[4]	-保留
[3]	如果外壳温度超过阈值(140℃),则该位被设置,并可用作温度预警。当外壳温度降至温度重置阈值(TCR3)以下时,该位会自动清除。
[2]	如果外壳温度超过阈值(130℃),则该位被设置,并可用作温度预警。当外壳温度降至温度重置阈值(TCR2)以下时,该位会自动清除。
[1]	如果外壳温度超过阈值(120℃),则该位被设置,并可用作温度预警。当外壳温度降至温度重置阈值(TCR1)以下时,该位会自动清除。
[0]	奇偶校验位

ADCxSR

通道 0-3 的电流传感器的数字值寄存器

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RESERVED	RESERVED	ADCxSR9	ADCxSR8	ADCxSR7	ADCxSR6	ADCxSR5	ADCxSR4	ADCxSR3	ADCxSR2	ADCxSR1	ADCxSR0	RESERVED	SOCRx	UPDTSR	PARITY
	-		读 -											读	

[15:14]	-								
[13:4]	10-bit 寄存器存储了 OUTPUTx 电流的数字值。								
[3]	-								
	SOCR 位控制通道 x 的输出状态:								
[2]	1- 输出启用								
	0-输出禁用								
[1]	更新状态位。当值被更新时,此位被设置; 当寄存器被读取时,此位被清零。								
[0]	奇偶校验位								

ADC9SR

芯片温度传感器电压数字值寄存器

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RESERVED	RESERVED	ADC9SR9	ADC9SR8	ADC9SR7	ADC9SR6	ADC9SR5	ADC9SR4	ADC9SR3	ADC9SR2	ADC9SR1	ADC9SR0	RESERVED	RESERVED	UPDTSR	PARITY
	-					Ì	卖						-	ì	卖

[15:14]	-
[13:4]	该 10-bit 寄存器存储了芯片温度传感器电压的数字值。
	ADC9SR9 (MSB)
	T _{CASE} (typ.) = 401.8 °C -1.009 * ADC9SR[13:4]
[3:2]	-
[1]	更新状态位。当值被更新时,此位被设置; 当寄存器被读取时,此位被清零。
[0]	奇偶校验位

Preliminary Datasheet

Α	DCLSR													自检测	低电流	数字值
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	RESERVED	RESERVED	ADCLSR9	ADCLSR8	ADCLSR7	ADCLSR6	ADCLSR5	ADCLSR4	ADCLSR3	ADCLSR2	ADCLSR1	ADCLSR0	RESERVED	RESERVED	UPDTSR	PARITY
		-					读	/写						-	ì	卖

[15:14]	-
[13:4]	该 10-bit 寄存器存储了用于自检的低电流水平的数字值。
[3:2]	-
[1]	更新状态位。当值被更新时,此位被设置; 当寄存器被读取时,此位被清零。
[0]	奇偶校验位

ADCMSR 自检测中电流数字值

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RESERVED	RESERVED	ADCMSR9	ADCMSR8	ADCMSR7	ADCMSR6	ADCMSR5	ADCMSR4	ADCMSR3	ADCMSR2	ADCMSR1	ADCMSR0	RESERVED	RESERVED	UPDTSR	PARITY
	-		读/写									-	ì	卖	

[15:14]	-
[13:4]	该 10-bit 寄存器存储了用于自检的中电流水平的数字值。
[3:2]	- %, / /
[1]	更新状态位。当值被更新时,此位被设置;当寄存器被读取时,此位被清零。
[0]	奇偶校验位

ADCHSR 自检测高电流数字值

~	-						 	_ ~		_ ~	4		-	ì	 卖
RESERVED	RESERVED	ADCHSR9	ADCHSR8	ADCHSR7	4DCHSR6	4DCHSR5	ADCHSR4	4DCHSR3	ADCHSR2	ADCHSR1	ADCHSR0	RESERVED	RESERVED	UPDTSR	VE G
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

[15:14]	-
[13:4]	该 10-bit 寄存器存储了用于自检的高电流水平的数字值。
[3:2]	-
[1]	更新状态位。当值被更新时,此位被设置;当寄存器被读取时,此位被清零。
[0]	奇偶校验位

Preliminary Datasheet

ITCNTSF	₹											I²t 计数	女器状态	寄存器	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RESERVED	RESERVED			ITCNT3			ITCNT2			ITCNT1			ITCNT0		PARITY
							ì	卖							

[15:13]	-
	通道3的I²t 计数器状态:
	001 → [12.5%: 25%]
[12:10]	 111 → [87.5%: 100%]
	通道 2 的 l²t 计数器状态:
	000 → [0%: 12.5%]
[O 7]	001 → [12.5%: 25%]
[9:7]	
	111 → [87.5%: 100%]
	通道1的 l²t 计数器状态:
	000 → [0%: 12.5%]
[6:4]	001 → [12.5%: 25%]
[0.4]	
	111 → [87.5%: 100%]
	通道 0 的 I²t 计数器状态:
	000 → [0%: 12.5%]
[3:1]	001 → [12.5%: 25%]
[3.1]	
	111 → [87.5%: 100%]
[0]	奇偶校验位

I't 自检测状态寄存器 **ITSTSR** 15 14 13 12 11 10 9 8 7 6 5 4 0 RESERVED RESERVED RESERVED PARITY ITST3 ITST2 ITST1 ITST0 读/写 读

[15:13]	-
	通道 3 的 l²t 自检测状态
[12:10]	每个测试结果值(低,中,高)占用一个位
	1: 通过
	0: 不通过
	通道 2 的 l²t 自检测状态
[9:7]	每个测试结果值(低,中,高)占用一个位
	1: 通过
	0: 不通过
	通道1的 l²t 自检测状态
[6:4]	每个测试结果值(低,中,高)占用一个位
	1: 通过
	0: 不通过
	通道 0 的 l²t 自检测状态
[3:1]	每个测试结果值(低,中,高)占用一个位
	1: 通过
	0: 不通过
[0]	奇偶校验位

12. 输出控制

根据设备的实际工作模式,输出可以通过 SPI 寄存器或直接输入 DIx 来控制。输出状态 = (SOCR & PWM) II (DIENCR & DIx)。

12.1. OUTPUT 通过 SPI 控制

在 Normal 模式下,输出可以通过在 SOCR 寄存器中将 Bit[n]设置为 1/0 来开启/关闭。

[n]: 指相关通道, n=0 对应通道 0, n=3 对应通道 3。

输出驱动器的状态通过 SPI 寄存器 SOCR, OUTCTRCR 寄存器中的直接输入使能位 DIENCR, PWM 模式 控制寄存器 PWMFCY 和通道控制寄存器 CTRL 进行配置。DIENCR 用于选择 OUTPUTX 输出是否也由 Dlx 控制,或者仅由 SOCR 控制。PWMFCY 用于选择输出是否以 PWM 模式下运行。在 Normal 模式下,有关输出控制的详细信息请参考下表:

DIENCR (OUTCFGRx)	Dix	SOCRx	DUTYCR	OUTPUTx
0	Х	0	Х%	OFF
0	X	1	X%	PWM
1	L	0	X%	OFF
1	L	1	X%	PWM
1	Н	Х	Х%	ON

表 15 输出控制真值表

在 Normal 模式下,输出可以由 SPI 命令,或 SPI 命令和直接输入 Dlx 的组合来驱动。

在 Fail-safe 模式下,输出由直接输入 Dlx 控制,与 SPI 命令无关。可以通过 Dlx 输入应用 PWM。 但在 Fail-safe 模式下,PWM 单元不处于活动状态。

为打开通道,信息必须输入到以下寄存器中:

- -使用两位 PWMFCYx 来选择 PWM 频率
- -使用五位 CHPHAx 相位信息来选择
- -使用两位 SLOPECRx 来选择转换斜率
- -使用 CCR 位来选择通道配置的灯泡/LED 模式
- -使用十位 OUTCTRCRx 寄存器来选择占空比信息
- -使用专用寄存器中的 SOCR 在通道控制寄存器中选择通道
- -使用 CTRL 寄存器中的 PWM TRIG 位来选择 PWM 触发模式

PWMSYNC 位将重置内部 12 位时钟计数器。这使得设备能够拥有一个已知的时间基准,并能够使不同设备之间彼此同步。

根据 PWMFCY 寄存器的设置,PWMCLK 上的信号会在内部以 4096 到 512 之间的一个系数进行分频,以生成输出的基准频率:

-PWM 信号可以通过恰当地选择时钟计数器上的 12 位中的 10 位来生成

使用 OUTCTRCR 寄存器中的 10 位 (最高有效位在前) 为每个 OUTPUTX 配置输出信号的占空比:

-将输出占空比编程为 000h 将导致 0%的占空比,这意味着根据 SOCR/Dlx 位的设置,通道将始终关闭。

-将输出占空比编程为 3FFh 将导致 100%的占空比(4095/4096),这意味着当 SOCR/DIx 位被设置时,通道将始终开启。

为了得到 10 位数据,通过将每个 OUTPUTX 的 CHPHAx 的 5 位与"00000"进行内部拼接,来配置输出信号的相位偏移。

- CHPHA = 00000b 表示相位偏移为 0 (内部 10 位相位偏移为 0x000=000000000b)
- CHPHA = 11111b 会导致最大的相位偏移,即 31/32(内部相位偏移为 0x3E0 = 000000000b)

相位偏移是相对于所选通道的基准频率而言的。因此,通道确切的开启时间点也取决于通道的工作模式。

如果 PWMCLK 的频率过低(f < PWM_Clk),则设备将回退到内部生成的约 400kHz 的 PWM 频率。在这种情况下,OUTSRx 中的 PWMCLOCKLOW 位和全局错误标志将被设置。PWM 计数器的下一个过零点之后,将考虑相位/占空比的变化。

相位偏移 (%)	5 Bits 寄存器 (H)	10 Bits 寄存器 (H)	相位偏移 (ms) PWM = 400 kHz, Divider = 2048	相位偏移 (ms) PWM = 400 kHz, Divider = 1024	相位偏移 (ms) PWM = 400 kHz, Divider = 512
9.4	03	60	0.481	0.24	0.12
28.1	09	120	1.439	0.719	0.360
46.9	OF	1E0	2.40	1.2	0.6
75	17	2E0	3.84	1.92	0.96
90	1C	380	4.608	2.304	1.152

表 16 相位偏移配置

12.2. 通过 OTP 进行的 DIX 控制映射

通过一个专用的 OTP 模块管理直接输入配置。

	bit 1, bit 0			
OTP 内存映射寄存器 (3Eh)	00	01	10	11
СНЗ	DI1	DI0	DI1	OFF
CH2	DI1	DI0	DI1	OFF
CH1	DIO	DI0	DI1	OFF
СНО	DIO	DI0	DI1	OFF

表 17 Dlx 控制用 OTP 内存设置

在 Fail-safe 模式下,如果线束保护被触发(当计数器倒计时到达 0,将自动重启)。**ITOFFSRx** 会立即被设置,并且只能通过复位和清除(R&C)命令(解锁通道,但计数器不复位)来重置。

在 Normal 模式下,设备被配置为锁定状态。一旦 ITOFFSRx 设置(即线束保护被触发时),就需要一个复位和清除(R&C)命令来解锁。当发送解锁命令时,计数器将保持其在倒计时期间达到的值(计数器不会复位)。

12.3. OUTPUT 通过 DIx 控制

通过向引脚施加高/低电平逻辑信号,可以在 Fail-safe 模式下打开/关闭所选的相关过热保护(OTP)输出。在 Normal 模式下,当 DIENCR 位被设置时,DIx 将采用"或"逻辑与 SPI 配置相结合。下方真值表展示了所规定的输出状态:

表 18	3 DIx	控制	」真值表

DIENCR	SOCRx	相关 Dix 逻辑状态	OUTPUTx 状态
1	1	X	ON
1	0	L	OFF
1	0	Н	ON
0	1	х	ON
0	0	х	OFF

通过使用通道控制寄存器 CCR,可以将输出通道配置为灯泡模式或 LED 模式。如果 CCR 中的相关位为 0,则输出被配置为灯泡模式,若 CCR 中的相关位被设置为 1,则输出被配置为 LED 模式(默认值为 0)。

12.4. OUTPUT 切换斜率

Output 切换斜率通过两个 OUTCFGCRx 寄存器中的两个设置位 SLOPECR1, 2 进行设置。切换斜率如下表所示:

表 19 切换斜率设置

SLOPECRX	通道 0-3
00	标准
01	快
10	更快
11	最快

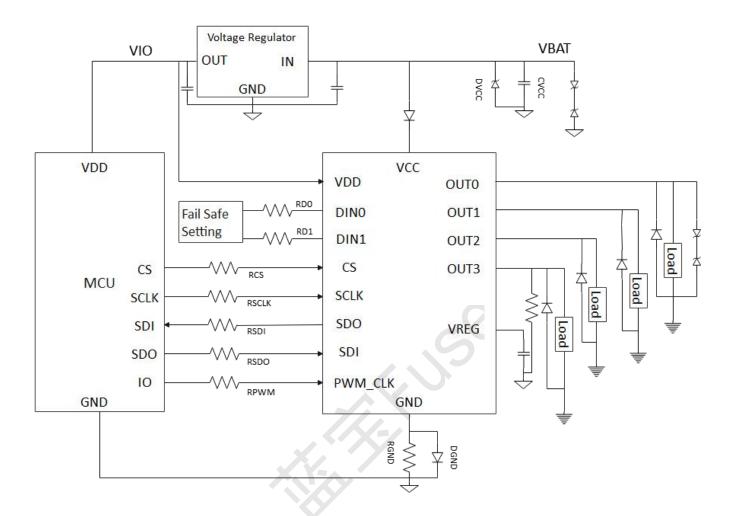
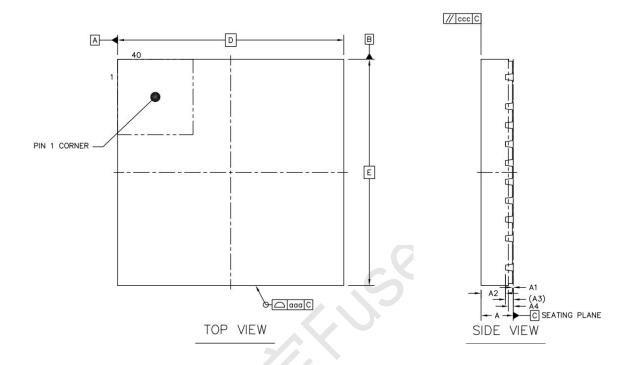
13. 并联模式

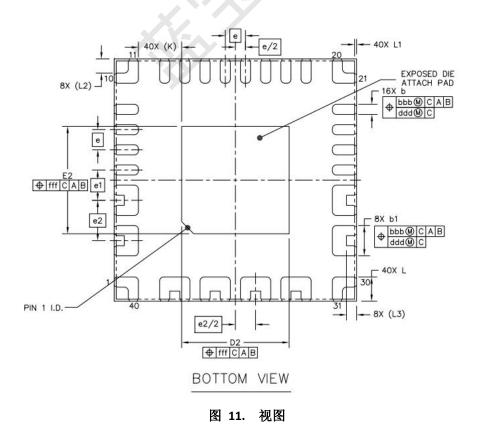
本产品支持输出通道独立工作,同时还设有 par0 和 par1 两个引脚,用于将通道设置为并联模式,以提供更高的电流能力。

表 20 并联模式设置

Par1, Par0	00	01	10	11		
通道并联模式	NC	通道0和通道1并联	通道 0 和通道 1 并联 通道 2 和通道 3 并联	所有通道并联		
主通道	NC	通道0为主	通道0与通道2为主	通道0为主		
DIX	NC	主通道控制	主通道控制			
SP 命令	NC	CH1 跟随 CH0 参数	CH1 跟随 CH0 参数 CH3 跟随 CH2 参数	CH1/2/3 使用 CH0 配置		
LED 模式	NC	NC				
CCM 模式	NC	主通道控制				
I2T 设置	NC	CH1 跟随 CH0 参数	CH1 跟随 CH0 参数 CH3 跟随 CH2 参数	CH1/2/3 使用 CH0 配置		

14. 应用信息


图 12 应用电路

15. 封装信息

15.1. 封装视图

		SYMBOL	MIN	NOM	MAX
TOTAL THICKNESS		Α	0.8	0.85	0.9
STAND OFF		A1	0	0.02	0.05
MOLD THICKNESS		A2		0.65	
L/F THICKNESS		А3		0.203 REF	
SIDE WETTABLE DEPTH		A4	0.075	13 	0.18
		b	0.2	0.25	0.3
LEAD WIDTH		b1	0.7	0.75	0.8
BODY SIZE	×	D		6 BSC	
BODT SIZE	Y	Е		6 BSC	
·		е		0.5 BSC	
LEAD PITCH		e1	0.75 BSC		
		e2		1 BSC	
ED SIZE	×	D2	2.56	2.66	2.76
EP SIZE	Y	E2	2.56	2.66	2.76
LEAD LENGTH		L	0.5	0.6	0.7
SIDE WETTABLE WIDTH		L1	0.01	10-1	0.09
LEAD EDGE TO DAGUAGE		L2	0.35 REF		
LEAD EDGE TO PACKAGE		L3	0.25 REF		
LEAD TIP TO EXPOSED PA	AD EDGE	K	1.07 REF		
PACKAGE EDGE TOLERANG	CE	aaa	0.1		
MOLD FLATNESS		ccc	0.1		
LEAD OFFSET	X. \	bbb	0.1		
LEAD OFFSET		ddd	0.05		
	EXPOSED PAD OFFSET			0.1	

16.产品信息

产品号	封装	引脚号	最小包装	湿度敏感等级	工作温度	标记
HSD3620Q32	FCQFN	32		1	-40 to 125℃	HSD3620

17. 缩写

缩写	含义
MOSFET	Metal Oxide Semiconductor Field-effect Transistor

18. 历史版本信息

文档 ID	手册状态	发布时间	改动
Rev 1.0	初始版本	2024/09/17	C
			J*